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Abstract

Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with
the usualsupremumnorm. Let Acm(S) be auniformly closed leftinvariantsubalgebra
of m (S) with 1 cA. We say that A is extremely left amenable if there isa multiplicative
leftinvariantmeanon A.LetP, = {heA:h=lg-lglfersomegeA,seS}. Itisshown that
Ajisextremely left amenable if and only if there is a mean g on A such that ¢ (P,) = 0.

1. Introductioﬁ

Let S be a semigroup and m (S) the Banach algebra of
all bounded real - valued functions on S with supremum
norm.Iff em(S)andseS, letlf(x) = f(sx)foranyx €S.

Let Acm(S)beauniformly closedleftinvariant (i.e.
1f € A foranyf e AandseS)subalgebraofm(S)with1e
A (1 is the constant one function on S). A linear
functional @ € A" (the continuous dual of A) isameanif
e(f)>0 foranyf >0f e A and ¢ (1) = 1. This is
equivalent to the condition that

Inf {f(x): x €S} < o (f) < Sup {f(x): x €S}

forallfeA.

We say that the subalgebra A is extremely left
amenable (ELA) if there is a multiplicative left
invariant meanon A, i.e. a mean gon A such that (1 f)
= p(f) and ¢(fg) = ¢ (f) ¢ (g), forallf, g eSandallseS.
Denote by P,the set of allh em (S) of the formh =g -
lglforsomegeA. seS,alsoletH, bethesetofallheA
which have a representation h = 2;:1 (£; -1 g;), for
somef;, g eA,SJ-,eSIS j<n.Incase A =m(S)wedenote
P,byPandif m(S)is ELA, we say that S is ELA.

Extremely left amenable semigroups were intro-
duced for the first time by T. Mitchell [6] and later on
studied by E. Granirer [3],[4], [5],and recentlyby]. C.
S. Wong [7].
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2. Basic Results
First we offer a Lemma.

Lemma 2. 1. Let A be a uniformly closed subalgebra
of m (S).

(i) A is alattice, if in addition A is left invariant then
P, CP.

(ii) If f e A and f >O, thenVfe A.

Let ¢ € A" be amean, then

(ii)le (fe)’< o () ¢ (8), forall f,ge A.

(iv) ¢ (fl) = 0 implies that ¢ (f) = 0, forallf e A.

Proof. (i) That A is a lattice is known by [2], henceifin
addition A is left invariant, then P, A.

(ii) Let m, (S) be the space of bounded complex -
valued functions on S with supremum norm. With
conjugate as involution, m_(S)isa C" -algebra. Now A
+ iA is a closed subalgebra of m_(S). If we considerfas
an element of the C” - algebra A + iA, it is easy tosee
that the spectrum of fis contained in [0. ), in factif A ¢
[0,0) then, ‘

1 1 ifImA # 0
b < Ima
' 1 ifImA % 0
TAT ="

So by {1, proposition 3.5], f = g? for some self -
adjoint, hencereal - valued functiong. Therefore f=g
€A,

(iii) Similar to the proof of Cauchy - Schwarz in
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equality.

(iv)If @(f) =0, thenp(f*+ 1) =0,50 p(£*) = @(f") -
=0ie. @(f)=0.

Theorem 2.2 Let A be a uniformly closed left invariant
subalgebra of m (S) with 1 e A. Then AisELA 1f and
only if there is a mean @ € A" such that @ (p,) =
Proof. Suppose A is ELA andlet pbea multlphcatxve
left invariant meanon A, then ¢(f-Lf)>=0,forallf €A,
s €S. So by Lemma 2,1, with f replaced bylf - Lfland g
replaced by 1, we obtain,

(- LD < @ (- LD =0,
hence ¢ (P,) = 0.

Conversely, suppose thereisamean ¢ €A’ suchthat
@(P,) = 0. Byparts (i) and (i) of Lemma2.1, we havelg
-1gl% €A, forallg €A, s €S, therefore by Lemma2.1
(iii) we have,

lp(is - Lt lg -

i.e. ¢(g - 1,g)? = 0. Now another application of Lemma
2.1 (iii) shows that

u@f5¢m4&%

(- 12D s e () p(g-18)} =

forall f e A. Hence by Lemma2.1(iv), ¢ (f(g-Lg)) =0
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i.e. @(H,) =0, therefore H, isnotdense inA,soby[4,
Lemma 3], AisELA. :

Corollary 2.3. S is ELA if and only if there isamean ¢
onm (S) such that ¢ (p) = 0.
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