A CHARACTERIZATION OF EXTREMELY AMENABLE SEMIGROUPS

A. Riazi and A. Hedayatiyan

Department of Mathematics, Faculty of Science, University of Shiraz, Shiraz 71454, Islamic Republic of Iran

Abstract

Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with the usual supremum norm. Let $A \subset m(S)$ be a uniformly closed left invariant subalgebra of m (S) with 1 ϵ A. We say that A is extremely left amenable if there is a multiplicative left invariant mean on A. Let $P_A = \{h \in A : h = |g - l_s g| \text{ for some } g \in A, s \in S\}$. It is shown that A is extremely left amenable if and only if there is a mean φ on A such that $\varphi(P_A) = 0$.

1. Introduction

Let S be a semigroup and m (S) the Banach algebra of all bounded real-valued functions on S with supremum norm. If $f \in m(S)$ and $g \in S$, let $g \in S$, let $g \in S$.

Let $A \subset m(S)$ be a uniformly closed left invariant (i.e. $l_s f \in A$ for any $f \in A$ and $s \in S$) subalgebra of m(S) with $1 \in A$ (1 is the constant one function on S). A linear functional $\varphi \in A$ (the continuous dual of A) is a mean if $\varphi(f) \geq 0$ for any $f \geq 0$ f $\in A$ and $\varphi(1) = 1$. This is equivalent to the condition that

$$\inf \{f(x): x \in S\} \le \varphi(f) \le \sup \{f(x): x \in S\}$$

for all $f \in A$.

We say that the subalgebra A is extremely left amenable (ELA) if there is a multiplicative left invariant mean on A, i.e. a mean φ on A such that $\varphi(l_s f) = \varphi(f)$ and $\varphi(fg) = \varphi(f) \varphi(g)$, for all $f, g \in S$ and all $s \in S$. Denote by P_A the set of all $h \in m$ (S) of the form $h = |g - l_s g|_s$ for some $g \in A$. $s \in S$, also let H_A be the set of all $h \in A$ which have a representation $h = \sum_{j=1}^{n} (f_j - l_{sj} g_j)$, for some $f_j, g_j \in A, S_j \in S1 \le j \le n$. In case A = m(S) we denote P_A by P and if m(S) is ELA, we say that S is ELA.

Extremely left amenable semigroups were introduced for the first time by T. Mitchell [6] and later on studied by E. Granirer [3], [4], [5], and recently by J. C. S. Wong [7].

Key words: Invariant means, Extremely Amenable Semigroups

2. Basic Results

First we offer a Lemma.

Lemma 2.1. Let A be a uniformly closed subalgebra of m (S).

- (i) A is a lattice, if in addition A is left invariant then $P_A \subseteq P$.
 - (ii) If $f \in A$ and $f \ge 0$, then $\sqrt{f} \in A$.

Let $\varphi \in A$ be a mean, then

- (iii) $|\varphi(fg)|^2 \le \varphi(f^2) \varphi(g^2)$, for all f, g \in A.
- (iv) $\varphi(|f|) = 0$ implies that $\varphi(f) = 0$, for all $f \in A$.

Proof. (i) That A is a lattice is known by [2], hence if in addition A is left invariant, then P_A A.

(ii) Let m_c (S) be the space of bounded complex-valued functions on S with supremum norm. With conjugate as involution, m_c (S) is a C*-algebra. Now A + iA is a closed subalgebra of m_c (S). If we consider f as an element of the C*-algebra A + iA, it is easy to see that the spectrum of f is contained in $[0,\infty)$, in fact if $\lambda \notin [0,\infty)$ then,

$$\frac{1}{|\cdot|} \le \frac{1}{\text{Im}\lambda} \qquad \text{if Im}\lambda \neq 0$$

$$\frac{1}{|\cdot|} \le \frac{1}{|\cdot|} \le \frac{1}{\lambda} \qquad \text{if Im}\lambda \neq 0$$

So by [1, proposition 3.5], $f = g^2$ for some self-adjoint, hence real-valued function g. Therefore $\sqrt{f} = g \epsilon A$.

(iii) Similar to the proof of Cauchy - Schwarz in

equality.

(iv) If
$$\varphi(|f|) = 0$$
, then $\varphi(f^+ + f^-) = 0$, so $\varphi(f^+) = \varphi(f^-) = 0$ i.e. $\varphi(f) = 0$.

Theorem 2.2 Let A be a uniformly closed left invariant subalgebra of m (S) with $1 \in A$. Then A is ELA if and only if there is a mean $\varphi \in A$ such that $\varphi(p_A) = 0$.

Proof. Suppose A is ELA and let φ be a multiplicative left invariant mean on A, then $\varphi(f-l_s f)^2 = 0$, for all $f \in A$, $s \in S$. So by Lemma 2.1, with f replaced by $|f-l_s f|$ and |g| replaced by 1, we obtain,

$$(\varphi(|\mathbf{f} - \mathbf{l}_s \mathbf{f}|))^2 \le \varphi(\mathbf{f} - \mathbf{l}_s \mathbf{f})^2 = 0,$$

hence $\varphi(\mathbf{P}_A) = 0.$

Conversely, suppose there is a mean $\varphi \in A$ such that $\varphi(P_A) = 0$. By parts (i) and (ii) of Lemma 2.1, we have $|g|^{1/2} \in A$, for all $g \in A$, $s \in S$, therefore by Lemma 2.1 (iii) we have,

$$|\varphi(|g - l_s g|^{1/2}|g - l_s g|^{3/2})|^2 \le \varphi(|g - l_s g|^3)$$

i.e. $\varphi(g - l_s g)^2 = 0$. Now another application of Lemma 2.1 (iii) shows that

$$(\varphi(|f(g-l_sg)|))^2 \le \varphi(f^2) \varphi(g-l_sg)^2 = 0$$

for all $f \in A$. Hence by Lemma 2.1 (iv), $\varphi(f(g-l_sg)) = 0$

i.e. $\varphi(H_A) = 0$, therefore H_A is not dense in A, so by [4, Lemma 3], A is ELA.

Corollary 2.3. S is ELA if and only if there is a mean φ on m (S) such that $\varphi(p) = 0$.

Acknowledgement

The first author would like to appreciate the financial support of the Shiraz University Research Council, grant #68 - SC - 575 - 307.

References

- 1. Conway, J. B., A Course in Functional Analysis.
- 2. R. G. Douglas, On Lattices and Algebras of Real Valued Functions, Amer. Math. Monthly, 72, pp. 642 643, (1965).
- 3. E. Granirer, Extremely Amenable Semigroups, Math. Scand., 17, pp. 177 197, (1965).
- 4. —, Extremely Amenable Semigroups, Math. Scand., 20, pp. 93 113, (1967).
- 5. —, Functional Analytic Properties of Extremely Amenable Semigroups, Trans. Amer. Math. Soc., 137, pp. 53 75, (1969).
- 6. T. Mitchell, Fixed points and Multiplicative Left Invariant Means, Trans. Amer. Math. Soc., 122, pp. 195 - 202, (1966).
- 7. J. C. S. Wong, Characterisations of Extremely Amenable Semigroups, *Math. Scand.*, 48, pp. 101 108, (1981).